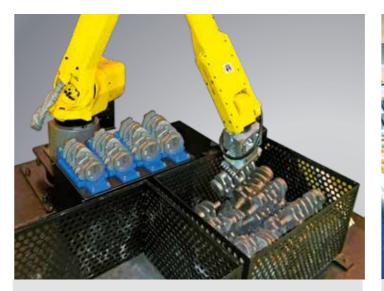


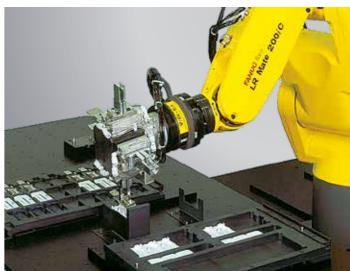
Customise your robots!


With more than 250 software functions for enhanced intelligence, motion, safety and productivity, and a wide variety of high quality FANUC accessories we have a solution for every conceivable application. We make your robots able to see, to feel, to learn and to behave safely. **Increase your productivity!**

Your benefits:

- Vision sensor and force sensor with the FANUC robots realise highly automated manufacturing systems in assembling and machining areas.
- Vision sensor can be applied to bin-picking automation.
- Intelligent robot eliminates peripheral equipment conventionally required for part-positioning and rearrangement, and reduces total cost of your system.
- Force control function with the force sensor automates high precision insertion of parts with sensitive control of force applied to a robot end effector.
- Intelligent robot promotes robotisation of deburring and polishing by contouring motion with specified pushing force.
- Robot accuracy enhancement product suites improve robot's positioning accuracy and enhance productive utilisation of offline programming system for an actual robot

Application examples


Bin picking

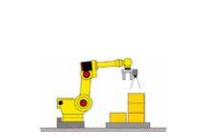
Visual tracking

Visual inspection after assembling

Precise assembling of small parts

Dimension check of holes (Gage insertion by force control)

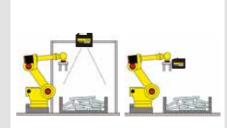
Force controlled deburring



Key functions

2D single-/multi-view vision process function

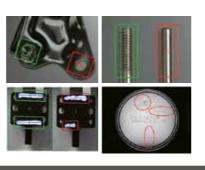
Allows the robot to locate a large rigid object precisely by combining the results from multiple snapped images.


Depalletising vision process function

Allows a single camera to estimate Z height of each palletised part using the scale information on an image, and outputs X, Y, Z and rotation detected.

3D Laser Vision Sensor function

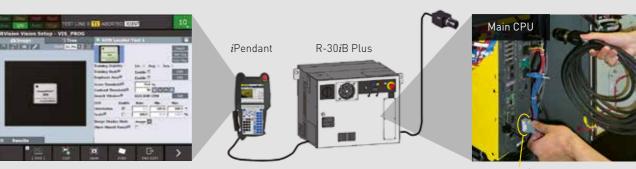
Allows the robot to detect 3D position and posture of a target object to recognize a large part by multi-view measurement and to conduct tool offset for gripping errors.


Bin picking function

Allows the robot to pick randomly piled objects by the sensor measurement along with avoiding interference.

Visual tracking function (iRPickTool)

Allows the robot to track objects on moving linear/ circular conveyors. Dynamic load balancing among multiple robots is also available.



Anti-Defect vision process function

Allows robotised automation to carry out error-proofing and flaw detection.

System configuration and setup of iRVision

The iRVision function and a dedicated camera port are integrated in the robot controller. The function can easily be set up with the graphical user interface on iPendant. The iPendant can also serve as a runtime monitoring screen.

Camera I/F

	•	5	F)(е	C	if	ic	a	ti	0	n	S
•••		•••		••••	••••								

2D Camera

3D Laser Vision Sensor

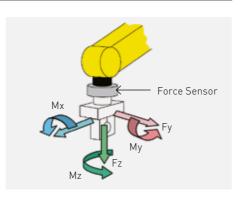
3D Vision Sensor 3DV/400, 3DV/600

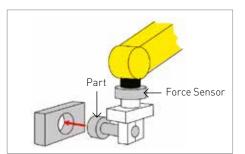
3D Vision Sensor

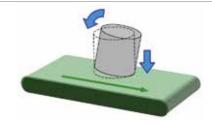
3DV/1600

					-				
•	 	 	 	 •	•	-	•	 	

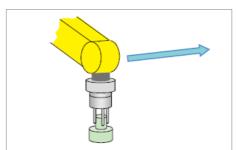
Common specifications


Image Type	Grayscale / Colour
LED Light for 2D Detection	Red / White / None
Image Resolution	Grayscale:1280×1024 / Colour: 640×512
Focal Length [mm]	8 / 12 / 16 / 25
Outer Dimension [mm]	80×131.8×74
Mass [kg]	0.6
Measurement Method	3D measurement with structured laser slit beams
Measurement Range [mm]	219×175×100
LED Light for 2D Detection	Red / None
Outer Dimension [mm]	187.6×145.8×88.7
Mass [kg]	0.8
Measurement Method	3D measurement with a single pattern light
Measurement Range [mm]	3DV/400: 268×262×500 3DV/600: 575×499×500
Maximum 3D Points	1104×950
LED Light for 2D Detection	Blue
Outer Dimension [mm]	154×133×51
Mass [kg]	1.1
Measurement Method	3D measurement with a single pattern light
Measurement Range [mm]	1280×1200× 2000
Maximum 3D Points	2208×1920
LED Light for 2D Detection	Blue
Outer Dimension [mm]	234 × 198.2 × 70
Mass [kg]	3.2
LED Power Supply	R-30iB Plus Integrated
Operating Temperature [°C]	0 to 45
Protection Class	IP67
Robot Mountable	Yes
Connectable Number	Up to 27

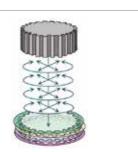

Force Sensor


Key functions

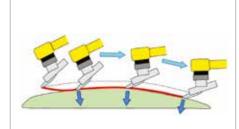
- Force sensor detects both force and torque applied to a robot end-effecter in Fx, Fy, Fz, Mx, My and Mz simultaneously.
- Realises H7/h7 JIS tolerance insertion.
- Robotises various applications requiring an intentional contact of two objects, such as face matching and contouring.

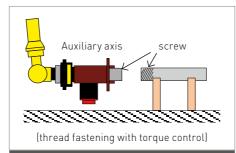


Precise Insertion



(Raw material grinding with belt sander)


Face matching / Constant pushing


Mass measurement in motion

Insertion with position searching and phase matching

Contouring

Thread fastening

^{*} Force control performance of a robot depends on the robot type, gripper design/weight, parts shape/weight to be handled as well as parts fixing method. The feasibility and applicability of a force sensor should be determined through testing with the actual production conditions.

		FS-15iAe	FS-15 <i>i</i> A	FS-40iA	FS-100 <i>i</i> A	FS-250 <i>i</i> A		
Specifications		for a mini robot (3-axis)	for a mini robot	for a small robot	for a medium robot	for a large robot		
Dimer	nsions	φ90 × 36 mm	φ94 × 43 mm	φ105 × 47 mm	φ155 × 59 mm	φ198 × 85 mm		
Mass	s [kg]	0.31 0.57		0.87	3.2	6.9		
Rated load	Fx, Fy, Fz	147 N (Fz)	147 N	392 N	980 N	2500 N		
Rated load	Mx, My, Mz	11.8 Nm (Mx,My)	11.8 Nm	39.2 Nm	156 Nm	500 Nm		
Static	Fx, Fy, Fz	1570 N (Fz)	1570 N	3920 N	9800 N	25000 N		
overload	Mx, My, Mz	125 Nm (Mx, My)	125 Nm	392 Nm	1560 Nm	5000 Nm		
D 1.1	Fx, Fy, Fz	0.39 N (Fz)	0.39 N	1.0 N	2.0 N	4.9 N		
Resolution	Mx, My, Mz	0.016 Nm (Mx, My)	0.016 Nm	0.029 Nm	0.08 Nm	0.25 Nm		
Accı	ıracy	3% or less	2% or less of the rated load					
Operating Temperature		0 to 45 ° C						
Protection Class			IP67					
Applicable robot		M-1 <i>i</i> A, M-3 <i>i</i> A, LR I	Mate 200 <i>i</i> D, M-10 <i>i</i> A	M-20iA, M-20iB	M-710 <i>i</i> C	R-2000iC		

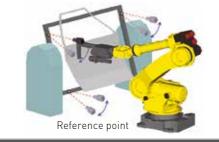
^{*} A part of the above list includes design specifications.

Robot accuracy product suites iRCalibration

Functions to improve robot accuracy using the integrated vision

iRCalibration	Outline
Vision Mastering	Robot positioning accuracy improvement
Vision Axis Master	Automatic one-axis mastering with vision
Vision TCP Set	Automatic setting of a tool center point
Vision Frame Set	Automatic setting of a user frame
Vision Multi-Cal	Automatic calibration of a multi-arm system
Vision Shift	Man-hours reduction for robot teaching
Mastering Recovery	Mastering condition recovery after maintenance operation as mechanical part replacement

Key functions

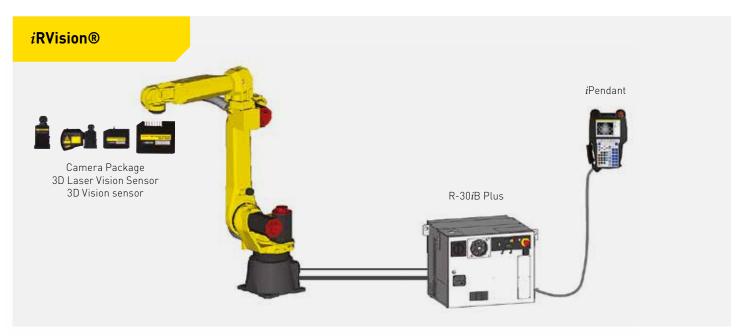

Vision Mastering

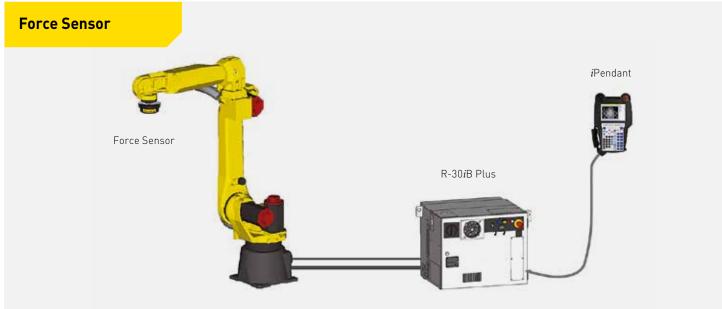
The function calibrates the robot mechanics. It improves the positioning accuracy of a robot, contributing to an accuracy improvement of TCP setting, vision application and easy utilisation of offline programs.

Vision TCP Set

The function allows you to set a tool frame automatically which was conventionally done by manual operation of the robot. It helps to set TCP accurately.

Vision Shift / Vision Frame Set


The function guides the robot to measure reference points on a part or its fixture automatically and adjusts programmed points. It helps to save both time and manpower for robot system relocation and offline program utilisation. It can also be used to set a user frame automatically by the measured reference points data.



Vision Multi-Cal

The function calibrates relations between multigroup robots which are under coordinated control. Both two-arm configuration and one-arm and one-positioner configuration are supported. It helps to improve the coordinated motion accuracy.

Basic configurations

